Historic computational attempts to model, simulate and make predictions about environmental assemblages, both emerge from and reinforce a systems view on the world. The word eco-system itself stands as a reminder that the history of ecology is enmeshed with systems theory and presupposes that species entanglements are operational or functional. More surreptitiously, a systematic view of the environment connotes it as bounded, knowable and made up of components operating in chains of cause and effect. This framing strongly invokes possibilities of manipulation and control and implicitly asks: what should an ecosystem be optimized for?